Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Plant Cell Environ ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693830

RESUMO

Urban trees possess different capacities to mitigate ozone (O3) pollution through stomatal uptake. Stomatal closure protects trees from oxidative damage but limits their growth. To date, it is unclear how plant hydraulic function affect stomatal behaviour and determine O3 resistance. We assessed gas exchange and hydraulic traits in three subtropical urban tree species, Celtis sinensis, Quercus acutissima, and Q. nuttallii, under nonfiltered ambient air (NF) and elevated O3 (NF60). NF60 decreased photosynthetic rate (An) and stomatal conductance (gs) only in Q. acutissima and Q. nuttallii. Maintained An in C. sinensis suggested high O3 resistance and was attributed to higher leaf capacitance at the full turgor. However, this species exhibited a reduced stomatal sensitivity to vapour pressure deficit and an increased minimal gs under NF60. Such stomatal dysfunction did not decrease intrinsic water use efficiency (WUE) due to a tight coupling of An and gs. Conversely, Q. acutissima and Q. nuttallii showed maintained stomatal sensitivity and increased WUE, primarily correlated with gs and leaf water relations, including relative water content and osmotic potential at turgor loss point. Our findings highlight a trade-off between O3 resistance and stomatal functionality, with efficient stomatal control reducing the risk of hydraulic failure under combined stresses.

2.
Sci Total Environ ; 927: 171842, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513864

RESUMO

Evapotranspiration (ET) is at the heart of the global water, energy, and carbon cycles. As ET is difficult and expensive to measure, it is crucial to develop estimation models that can be widely applied. Currently, an improved Priestley-Taylor (PT) model considers soil moisture stress, temperature constraints, and leaf senescence; however, its parameter (fs) for simulating crop senescence is based on empirical values, making it difficult to apply to different varieties and complex external conditions and thus challenging to generalize. We improved the parameters fs in the original model based on the chlorophyll decomposition that accompanies crop senescence through easily observable SPAD values (Soil-Plant Analysis Development readings) in the field. We validated the improved model by obtaining ET of different rice varieties in 2022 and 2023 using the energy balance residual method at the Free Air Concentration Enrichment Experimental (FACE) Facility located in Yangzhou City, China. The results showed that the simulation of leaf senescence using SPAD values was feasible and could be extended to different varieties. The new model using improved leaf senescence parameter for estimating ET and transpiration (T) in three plots (2022 and 2023) exhibited slightly enhanced accuracy, particularly at the later stages of crop growth. Moreover, the higher the T/ET ratio of the cropland, the more significant the improvement. This new development enhances the ability of PT models to estimate ET and T using readily available field observations and provides some suggestions for wider application in the field for other crop species.


Assuntos
Oryza , Folhas de Planta , Transpiração Vegetal , Oryza/fisiologia , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia , China , Água , Solo/química
3.
Sci Total Environ ; 920: 171030, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367724

RESUMO

Increased surface ozone (O3) pollution seriously threatens crop production, and ethylenediurea (EDU) can alleviate crop yield reduction caused by O3. However, the reason for the decrease in grain nitrogen (N) accumulation caused by O3 and whether EDU serves as N fertilizer remain unclear. An experiment was conducted to investigate the impacts of factorial combinations of O3 enrichment (ambient air plus 60 ppb) and EDU (foliage spray with 450 ppm solutions) on N concentration, accumulation and remobilization in hybrid rice seedlings. Compared to ambient condition, elevated O3 significantly inhibited the N accumulation in vegetative organs during anthesis and grain N accumulation during the maturity stage. Elevated O3 significantly decreased the total N accumulation during anthesis and maturity stages, with a greater impact at the latter stage. The decrease in grain N accumulation caused by O3 was attributed to a decrease in N remobilization of vegetative organs during the grain filling period as well as to a decrease in post-anthesis N uptake. However, there was no significant change in the proportion of N remobilization and N uptake in grain N accumulation. The inhibitory effect of O3 on N remobilization in the upper canopy leaves was greater than that in the lower canopy leaves. In addition, elevated O3 increased the N accumulation of panicles at the anthesis stage, mainly by resulting in earlier heading of rice. EDU only increased N accumulation at the maturity stage, which was mainly attributed to an increase in rice biomass by EDU. EDU had no significant effect on N concentration, N remobilization process, and N harvest index. The findings are helpful to better understand the utilization of N fertilizer by rice under O3 pollution, and can also provide a theoretical basis for sustainable nutrient management to alleviate the negative impact of O3 on crop yield and quality.


Assuntos
Oryza , Ozônio , Grão Comestível , Fertilizantes , Nitrogênio/farmacologia , Ozônio/farmacologia
4.
Plant Cell Environ ; 47(4): 1269-1284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185874

RESUMO

Tropospheric ozone (O3 ) is a phytotoxic air pollutant adversely affecting plant growth. High O3 exposures are often concurrent with summer drought. The effects of both stresses on plants are complex, and their interactions are not yet well understood. Here, we investigate whether drought can mitigate the negative effects of O3 on plant physiology and growth based on a meta-analysis. We found that drought mitigated the negative effects of O3 on plant photosynthesis, but the modification of the O3 effect on the whole-plant biomass by drought was not significant. This is explained by a compensatory response of water-deficient plants that leads to increased metabolic costs. Relative to water control condition, reduced water treatment decreased the effects of O3 on photosynthetic traits, and leaf and root biomass in deciduous broadleaf species, while all traits in evergreen coniferous species showed no significant response. This suggested that the mitigating effects of drought on the negative impacts of O3 on the deciduous broadleaf species were more extensive than on the evergreen coniferous ones. Therefore, to avoid over- or underestimations when assessing the impact of O3 on vegetation growth, soil moisture should be considered. These results contribute to a better understanding of terrestrial ecosystem responses under global change.


Assuntos
Ecossistema , Ozônio , Secas , Ozônio/toxicidade , Fotossíntese , Folhas de Planta/fisiologia , Plantas
5.
Environ Pollut ; 344: 123407, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244900

RESUMO

Understanding the long-term change trends of ozone-induced yield losses is crucial for formulating strategies to alleviate ozone damaging effects, aiming towards achieving the Zero Hunger Sustainable Development Goal. Despite a wealth of experimental research indicating that ozone's influence on agricultural production exhibits marked fluctuations and differs significantly across various geographical locations, previous studies using global statistical models often failed to capture this spatial-temporal variability, leading to uncertainties in ozone impact estimation. To address this issue, we conducted a comprehensive assessment of the spatial-temporal variability of ozone impacts on maize and soybean yields in the United States (1981-2021) using a geographically and temporally weighted regression (GTWR) model. Our results revealed that over the past four decades, ozone pollution has led to average yield losses of -3.5% for maize and -6.1% for soybean, translating into an annual economic loss of approximately $2.6 billion. Interestingly, despite an overall downward trend in ozone impacts on crop yields following the implementation of stringent ozone emission control measures in 1997, our study identified distinct peaks of abnormally high yield reduction rates in drought years. Significant spatial heterogeneity was detected in ozone impacts across the study area, with ozone damage hotspots located in the Southeast Region and the Mississippi River Basin for maize and soybean, respectively. Furthermore, we discovered that hydrothermal factors modulate crop responses to ozone, with maize showing an inverted U-shaped yield loss trend with temperature increases, while soybean demonstrated an upward trend. Both crops experienced amplified ozone-induced yield losses with rising precipitation. Overall, our study highlights the necessity of incorporating spatiotemporal variability into assessments of crop yield losses attributable to ozone pollution. The insights garnered from our findings can contribute to the formulation of region-specific pollutant emission policies, based on the distinct profiles of ozone-induced agricultural damage across different regions.


Assuntos
Glycine max , Ozônio , Zea mays , Mississippi , Agricultura , Ozônio/toxicidade
6.
Plant Cell Environ ; 47(4): 1070-1083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018689

RESUMO

Forest ecosystems cover a large area of the global land surface and are important carbon sinks. The water-carbon cycles of forests are prone to climate change, but uncertainties remain regarding the magnitude of water use efficiency (WUE) response to climate change and the underpinning mechanism driving WUE variation. We conducted a meta-analysis of the effects of elevated CO2 concentration (eCO2 ), drought and elevated temperature (eT) on the leaf- to plant-level WUE, covering 80 field studies and 95 tree species. The results showed that eCO2 increased leaf intrinsic and instantaneous WUE (WUEi, WUEt), whereas drought enhanced both leaf- and plant-level WUEs. eT increased WUEi but decreased carbon isotope-based WUE, possibly due to the influence of mesophyll conductance. Stimulated leaf-level WUE by drought showed a progressing trend with increasing latitude, while eCO2 -induced WUE enhancement showed decreasing trends after >40° N. These latitudinal gradients might influence the spatial pattern of climate and further drove WUE variation. Moreover, high leaf-level WUE under eCO2 and drought was accompanied by low leaf carbon contents. Such a trade-off between growth efficiency and defence suggests a potentially compromised tolerance to diseases and pests. These findings add important ecophysiological parameters into climate models to predict carbon-water cycles of forests.


Assuntos
Ecossistema , Água , Carbono , Mudança Climática , Dióxido de Carbono , Florestas , Folhas de Planta/química , Plantas
7.
Sci Total Environ ; 912: 169311, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38103608

RESUMO

Methane (CH4) is both generated and consumed in paddy soils, where anaerobic oxidation of methane (AOM) serves as a crucial process for mitigating CH4 emissions. Although the participation of humic acids (HA) and nitrate in AOM has been recognized, their relative roles and significance in paddy soils remain insufficiently investigated. In this study, we explored the potential activity of AOM driven by HA and nitrate, as well as the composition of archaeal communities in paddy soils across different rice growth periods and fertilization treatments. AOM activity ranged from 0.81 to 1.33 and 1.26 to 2.38 nmol of 13CO2 g-1 (dry soil) day-1 with HA and nitrate, respectively. No significant differences (p < 0.05) were observed between the AOM activity driven by HA and nitrate across the three fertilization treatments. According to AOM activity, the annual consumption of CH4 was estimated at approximately 0.49 ± 0.06 and 0.83 ± 0.19 Tg for AOM processes driven by HA and nitrate in Chinese paddy soils. Nitrate-driven AOM activity exhibited a positive (p < 0.05) correlation with the abundance of the ANME-2d mcrA gene but a negative (p < 0.05) correlation with the content of dissolved organic carbon. Intriguingly, HA-driven AOM activity was only correlated positively with the nitrate-driven AOM activity. Soil water content, soil organic carbon, nitrate and nitrite contents were significantly correlated with the relative abundance of methanogenic and methanotrophic archaea. These results identified the potential importance of HA and nitrate in driving AOM processes within paddy soils, providing a comprehensive understanding of the complex microbial processes regulating greenhouse gas emissions from paddy soils.


Assuntos
Substâncias Húmicas , Nitratos , Solo , Metano , Anaerobiose , Carbono , Archaea/genética , Oxirredução
8.
Science ; 382(6675): 1131, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060637
9.
Environ Sci Pollut Res Int ; 30(57): 120483-120495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945953

RESUMO

Potato is an important crop worldwide and threatened by various environmental stresses, including elevated ozone (e[O3]). Here, we conducted a meta-analysis to quantify the effect of e[O3] on potato plants and how it varies depending upon different experimental conditions. Regarding plant growth and biomass, e[O3] significantly decreased shoot biomass by 18% and belowground biomass by 35%, while it increased the leaf area index by 19% and total number of injured leaves by 146%. As for yield, e[O3] significantly decreased the total tuber number by 21%. A relatively pronounced effect of e[O3] on the stomatal conductance was observed when exposure lasted 31-60 days, which was significantly greater than that after exposure lasted 96-311 days. The overall quantity of leaves was mainly decreased by higher (100-150 ppb) than lower (30-80 ppb) concentrations of e[O3] compared to ambient O3. The effect of e[O3] on the total tuber number was significant mainly when exposure lasted 31-90 days and was greater in plants grown in growth chambers than those planted in open-top chambers and glasshouses. The effect of e[O3] stress on physiology, growth, and yield varied among cultivars, with some cultivars showing marked tolerance relative to other cultivars. The findings can guide strategies to manage the negative impacts of e[O3] stress on potato production.


Assuntos
Ozônio , Folhas de Planta , Solanum tuberosum , Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Fotossíntese , Estresse Fisiológico
10.
Nat Food ; 4(10): 854-865, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37845546

RESUMO

Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.


Assuntos
Poluição do Ar , Ecossistema , Mudança Climática , Produtos Agrícolas/genética , Produção Agrícola
11.
Plant Direct ; 7(7): e513, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37484545

RESUMO

The increasing ground-level ozone (O3) pollution resulting from rapid global urbanization and industrialization has negative effects on many plants. Nonetheless, many gaps remain in our knowledge of how ornamental plants respond to O3. Rose (Rosa hybrida L.) is a commercially important ornamental plant worldwide. In this study, we exposed four rose cultivars ("Schloss Mannheim," "Iceberg," "Lüye," and "Spectra") to either unfiltered ambient air (NF), unfiltered ambient air plus 40 ppb O3 (NF40), or unfiltered ambient air plus 80 ppb O3 (NF80). Only the cultivar "Schloss Mannheim" showed significant O3-related effects, including foliar injury, reduced chlorophyll content, reduced net photosynthetic rate, reduced stomatal conductance, and reduced stomatal apertures. In "Schloss Mannheim," several transcription factor genes-HSF, WRKY, and MYB genes-were upregulated by O3 exposure, and their expression was correlated with that of NCED1, PP2Cs, PYR/PYL, and UGTs, which are related to ABA biosynthesis and signaling. These results suggest that HSF, WRKY, and MYB transcription factors and ABA are important components of the plant response to O3 stress, suggesting a possible strategy for cultivating O3-tolerant rose varieties.

12.
Sci Total Environ ; 891: 164325, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244606

RESUMO

The sensitivity of isoprene emission rate (ISOrate) to ozone (O3) in plant suggests potentially large changes in future isoprene emissions, which will have important consequences for atmospheric chemistry. However, the interspecific variation of ISOrate sensitivity to O3 and its key drivers remain largely unknown. In this study, four urban greening tree species were exposed to two O3 treatments (charcoal-filtered air, CF; and non-filtered ambient air plus 60 ppb extra O3, EO3) in open-top chambers for one growing season. We aimed to compare the interspecific variation in O3 inhibitory effect on ISOrate and explore its physiological mechanism. EO3 decreased the ISOrate by on average 42.5 % across species. According to absolute effect size ranking, the highest ISOrate sensitivity to EO3 was observed in Salix matsudana, followed by Sophora japonica and hybrid poplar clone '546', while Quercus mongolica ISOrate was the least sensitive. Leaf anatomical structures differed in tree species but did not respond to EO3. Furthermore, the ISOrate sensitivity to O3 was driven by the concurrent effects of O3 on ISO synthesis ability (i.e., dimethylallyl diphosphate and isoprene synthase contents) and stomatal conductance. Overall, the mechanistic understanding grained from this study may promote the integrity of O3 effect into process-based ISO emission models.


Assuntos
Ozônio , Árvores , Fotossíntese , Ozônio/farmacologia , Folhas de Planta/fisiologia
13.
Environ Pollut ; 330: 121726, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127233

RESUMO

Near-surface ozone causes damages on both crop and forest but their long-term spatiotemporal changes in China have been insufficiently explored, preventing comprehensive policy making with food security and climate targets. Moreover, limitation exists in the current metrics for long-term regional ozone risk assessment, AOT40 (the accumulated hourly ozone over a threshold of 40 ppbv) and PODY (phytotoxic ozone dose over a threshold of Y nmol ozone m-2 PLA s-1), with ignorance of meteorological influence for the former and complicated data collection and calculation procedures for the latter. Here, we developed a new metric for ozone-induced risk on winter wheat, O3MET, which can be easily derived based on ozone concentrations and meteorological variables, and is suitable for long-term assessment of ozone-induced wheat loss at the regional scale. Combining with existing metric for forest (O3RH), we comprehensively quantified the ozone damages on winter wheat yield and forest gross primary production (GPP) for mainland China during 2010-2021, the period with fast growth of ozone level across the country. The annual average losses of wheat yield and forest GPP were estimated at 26.5 Mt and 552.6 TgC, accounting for 17% and 4% of the total yield and GPP without ozone impact, respectively. Heavy dual ozone-induced damages on both wheat and forest were presented in East and South China. The ozone-induced wheat yield loss and forest GPP loss were estimated to increase at a rate of 1.8 Mt/yr and 13.9 TgC/yr for the entire country, respectively, driven mainly by the enhanced ambient ozone level within the research period. Besides ecological impact, the ozone pollution in the developed eastern China resulted in serious health burden as well, thus effective actions on ozone pollution alleviation in the region is crucial for reducing its ecological and health risks simultaneously.


Assuntos
Poluentes Atmosféricos , Ozônio , Ozônio/toxicidade , Ozônio/análise , Triticum , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Florestas , China
14.
Appl Environ Microbiol ; 89(4): e0018023, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022183

RESUMO

Ethylenediurea (EDU) can effectively mitigate the crop yield loss caused by ozone (O3), a major, phytotoxic air pollutant. However, the relevant mechanisms are poorly understood, and the effect of EDU on soil ecosystems has not been comprehensively examined. In this study, a hybrid rice variety (Shenyou 63) was cultivated under ambient O3 and sprayed with 450 ppm EDU or water every 10 days. Real time quantitative polymerase chain reaction (RT-qPCR) showed that EDU had no significant effect on the microbial abundance in either rhizospheric or bulk soils. By applying both metagenomic sequencing and the direct assembly of nitrogen (N)-cycling genes, EDU was found to decrease the abundance of functional genes related to nitrification and denitrification processes. Moreover, EDU increased the abundance of genes involved in N-fixing. Although the abundance of some functional genes did not change significantly, nonmetric multidimensional scaling (NMDS) and a principal coordinates analysis (PCoA) suggested that the microbial community structure involved in N cycling was altered by EDU. The relative abundances of nifH-and norB-harboring microbial genera in the rhizosphere responded differently to EDU, suggesting the existence of functional redundancy, which may play a key role in sustaining microbially mediated N-cycling under ambient O3. IMPORTANCE Ethylenediurea (EDU) is hitherto the most efficient phytoprotectant agent against O3 stress. However, the underlying biological mechanisms of its mode of action are not clear, and the effects of EDU on the environment are still unknown, limiting its large-scale application in agriculture. Due to its sensitivity to environmental changes, the microbial community can be used as an indicator to assess the environmental impacts of agricultural practices on soil quality. This study aimed to unravel the effects of EDU spray on the abundance, community structure, and ecological functions of microbial communities in the rhizosphere of rice plants. Our study provides a deep insight into the impact of EDU spray on microbial-mediated N cycling and the structure of N-cycling microbial communities. Our findings help to elucidate the mode of action of EDU in alleviating O3 stress in crops from the perspective of regulating the structure and function of the rhizospheric soil microbial community.


Assuntos
Microbiota , Oryza , Ozônio , Solo/química , Ozônio/farmacologia , Microbiologia do Solo , Nitrogênio
15.
Sci Total Environ ; 875: 162721, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898537

RESUMO

Increasing ozone (O3) and nitrogen (N) addition may have contradictory effects on plant photosynthesis and growth. However, it remains unclear whether these effects on aboveground parts further change the root resource management strategy and the relationships of fine root respiration and biomass with other physiological traits. In this study, an open-top chamber experiment was conducted to investigate the effects of O3 alone and in combination with nitrogen (N) addition on root production and fine root respiration of poplar clone 107 (Populus × euramericana cv. '74/76'). Saplings were grown with (100 kg ha-1 year-1) or without (+0 kg ha-1 year-1) N addition under two O3 regimes (non-filtered ambient air or non-filtered ambient air + 60 ppb of O3). After about two to three months of treatment, elevated O3 significantly decreased fine root biomass and starch content but increased fine root respiration, which occurred in tandem with inhibited leaf light-saturated photosynthetic rate (Asat). Nitrogen addition did not change fine root respiration or biomass, neither did it alter the effect of elevated O3 on the fine root traits. However, N addition weakened the relationships of fine root respiration and biomass with Asat, fine root starch and N concentrations. No significant relationships of fine root biomass and respiration with soil mineralized N were observed under elevated O3 or N addition. These results imply that changed relationships of plant fine root traits under global changes should be considered into earth system process models to project more accurately future carbon cycle.


Assuntos
Ozônio , Populus , Biomassa , Ozônio/farmacologia , Populus/fisiologia , Nitrogênio/farmacologia , Fotossíntese , Folhas de Planta/fisiologia
16.
Chemosphere ; 318: 137909, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681195

RESUMO

Toxic substances in the environment disturb the adsorption of pollutants in plants but little is known about the underlying mechanisms of these processes. This study evaluated the PAH adsorption by Phragmites australis under NAs stress. Results showed that Naphthenic acids (NAs) significantly decreased the adsorption of PAHs and had higher selectivity for type and structure. P. australis root cell growth and mitosis were significantly affected by NAs, which was accompanied by serious disturbances in mitochondrial function. The physiological evaluation showed the NAs could increase Reactive Oxygen Species (ROS) accumulation by around 16-fold and cause damage to the root cell normal redox equilibrium. The levels of three key related antioxidants, PLA, CAT and POD, decreased significantly to 35-50% under NAs stress and were dependent upon NAs concentration. Furthermore, NAs could significantly change the concentration and species of root exudates of P. ausralis. Autotoxic substances, including alcohol and amines, increased by 28.63% and 23.96, respectively. Sixteen compounds were identified and assumed as potential biomarkers. Galactonic, glyceric, and octadecanoic acid had the general effect of activating PAH in soil. The global view of the metabolic pathway suggests that NAs influenced the citric acid cycle, fatty acid synthesis, amino acid metabolism and the phenylpropanoid pathway. Detection data results indicated that the energy products cause hypoxia and oxidative stress, which are the main processes under the NAs. Furthermore, verification of these processes was fulfilled through gene expression and biomarkers quantification. Our results provide novel metabolic insights into the mechanisms of PAHs adsorption by P. australis under NAs disturbance, suggesting that monitoring NAs in phytoremediation applications is necessary.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Adsorção , Poaceae/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
17.
mSystems ; 8(1): e0072122, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625584

RESUMO

Plant primary productivity and crop yields have been reduced due to the doubled level of global tropospheric ozone. Little is known about how elevated ozone affects soil microbial communities in the cropland ecosystem and whether such effects are sensitive to the nitrogen (N) supply. Here, we examined the responses of bacterial and fungal communities in maize soils to elevated ozone (+60 ppb ozone) across different levels of N fertilization (+60, +120, and +240 kg N ha-1yr-1). The fungal alpha diversity was decreased (P < 0.05), whereas the bacterial alpha diversity displayed no significant change under elevated ozone. Significant (P < 0.05) effects of N fertilization and elevated ozone on both the bacterial and fungal communities were observed. However, no interactive effects between N fertilization and elevated ozone were observed for bacterial and fungal communities (P > 0.1). The bacterial responses to N fertilization as well as the bacterial and fungal responses to elevated ozone were all phylogenetically conserved, showing universal homogeneous selection (homogeneous environmental conditions leading to more similar community structures). In detail, bacterial Alphaproteobacteria, Actinobacteria, and Chloroflexi, as well as fungal Ascomycota, were increased by elevated ozone, whereas bacterial Gammaproteobacteria, Bacteroidetes, and Elusimicrobia, as well as fungal Glomeromycota, were decreased by elevated ozone (P < 0.05). These ozone-responsive phyla were generally correlated (P < 0.05) with plant biomass, plant carbon (C) uptake, and soil dissolved organic C, demonstrating that elevated ozone affects plant-microbe interactions. Our study highlighted that microbial responses to elevated ozone display a phylogenetic clustering pattern, suggesting that response strategies to elevated ozone stress may be phylogenetically conserved ecological traits. IMPORTANCE The interactions of plant and soil microbial communities support plant growth and health. The increasing tropospheric ozone decreases crop biomass and also alters soil microbial communities, but the ways in which crops and their associated soil microbial communities respond to elevated tropospheric ozone are not clear, and it is also obscure whether the interactions between ozone and the commonly applied N fertilization exist. We showed that the microbial responses to both elevated ozone and N fertilization were phylogenetically conserved. However, the microbial communities that responded to N fertilization and elevated ozone were different, and this was further verified by the lack of an interactive effect between N fertilization and elevated ozone. Given that the global tropospheric ozone concentration will continue to increase in the coming decades, the decrease of specific microbial populations caused by elevated ozone would result in the extinction of certain microbial taxa. This ozone-induced effect will further harm crop production, and awareness is urgently needed.


Assuntos
Microbiota , Ozônio , Solo/química , Filogenia , Nitrogênio/farmacologia , Ozônio/farmacologia , Microbiologia do Solo , Microbiota/genética , Bactérias/genética , Fertilização
18.
Ann Bot ; 131(4): 655-666, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36694346

RESUMO

BACKGROUND AND AIMS: Polyploidization can improve plant mass yield for bioenergy support, yet few studies have investigated ozone (O3) sensitivity linked to internal regulatory mechanisms at different ploidy levels. METHODS: Diploid and triploid Populus tomentosa plants were exposed to ambient and ambient plus 60 ppb [O3]. We explored their differences in sensitivity (leaf morphological, physiological and biochemical traits, and plant mass) as well as mechanisms of avoidance (stomatal conductance, xanthophyll cycle, thermal dissipation) and tolerance (ROS scavenging system) in response to O3 at two developmental phases. KEY RESULTS: Triploid plants had the highest plant growth under ambient O3, even under O3 fumigation. However, triploid plants were the most sensitive to O3 and under elevated O3 showed the largest decreases in photosynthetic capacity and performance, as well as increased shoot:root ratio, and the highest lipid peroxidation. Thus, plant mass production could be impacted in triploid plants under long-term O3 contamination. Both diploid and triploid plants reduced stomatal aperture in response to O3, thereby reducing O3 entrance, yet only in diploid plants was reduced stomatal aperture associated with minimal (non-significant) damage to photosynthetic pigments and lower lipid peroxidation. CONCLUSIONS: Tolerance mechanisms of plants of both ploidy levels mainly focused on the enzymatic reduction of hydrogen peroxide through catalase and peroxidase, yet these homeostatic regulatory mechanisms were higher in diploid plants. Our study recommends triploid white poplar as a bioenergy species only under short-term O3 contamination. Under continuously elevated O3 over the long term, diploid white poplar may perform better.


Assuntos
Ozônio , Populus , Ozônio/farmacologia , Populus/genética , Triploidia , Fotossíntese/fisiologia , Folhas de Planta/genética , Ploidias
19.
Glob Chang Biol ; 29(10): 2804-2823, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36718962

RESUMO

Decline in mesophyll conductance (gm ) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3 ). Leaf anatomical traits are known to influence gm , but the potential effects of O3 -induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3 . The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm . We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3 -induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3 .


Assuntos
Ozônio , Populus , Folhas de Planta/fisiologia , Células do Mesofilo/fisiologia , Fotossíntese
20.
Trends Ecol Evol ; 37(11): 939-941, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36184389

RESUMO

Ozone pollution disrupts floral visual and volatile signals, olfactory perception of volatile communication signals, and learning, memory, and behavior of pollinators. These changes could have implications for plant-pollinator systems.


Assuntos
Ozônio , Polinização , Flores , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA